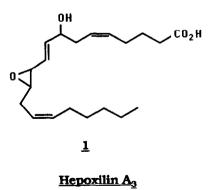
SYNTHESIS OF (±)-HEPOXILIN A3 UTILIZING ARSONIUM YLIDES

P. CHABERT, C. MIOSKOWSKI*


Université Louis Pasteur, Laboratoire de Chimie Bio-organique associé au CNRS, Faculté de Pharmacie, 74 route du Rhin F-67400 STRASBOURG Cédex FRANCE.

J.R. FALCK

Departments of molecular Genetics and Pharmacology, University of Texas Southwestern Medical Center, DALLAS, TEXAS 75235 USA.

<u>Summary</u>: (\pm) -Hepoxilin A₃, a biologically active metabolite of arachidonic acid, was prepared from 1-heptyne and δ -valerolactone by a simple, convergent strategy that exploits arsonium ylides for homologation/functionalization.

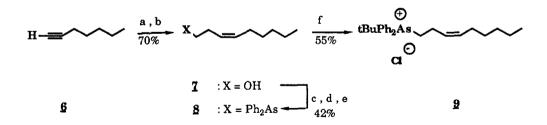
Hepoxilin A_3 , 1 was initially isolated¹ in 1982 from incubations of arachidonic acid with rat lung homogenate and subsequantly characterized² as 8-hydroxy-11,12-epoxyeicosa-5,9,14-trienoic acid, epimeric at C(8). Previously, 1 had been proposed as the pivotal intermediate leading to the 8,9,12- and 8,11,12-triols (trioxilins) produced by blood platelets and other tissues via the 12-lipoxygenase pathway³⁻⁵. Pace-Asciak reported that 1 is an endogenous product of pancreatic islets⁶ where it displays insulin secretagogue activity⁷ and that it potentiates calcium transport across membranes⁸. Furthermore, hepoxilin A_3 concentrations in the circulation have been correlated with plasma insulin levels⁹. More recent studies¹⁰ suggest 1 acts as a second messenger for presynaptic inhibition in <u>Aplysia</u> sensory cells. In the rat, a hepoxilin A_3 pathway has been demonstrated in several parts of the central nervous system¹¹, although its functional significance remains obscure.



Continuing efforts to elucidate the occurrence and physiological role(s) of hepoxilin A_3 are trammeled by the limited availability of natural material and would be greatly expedited by the development of an inexpensive and pratical synthetic route to **1**.

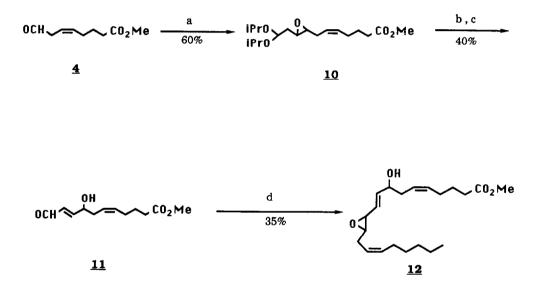
Herein, we report an efficient total synthesis of (\pm) -hepoxilin A_3 by a convergent strategy that exploits the unique properties of arsonium ylides. Corey and Su^{12} have described a synthesis of 11,12(S,S)-1 using an epoxyaldehyde and a stabilized phosphonium ylide.

The C(1)-C(8) moiety **4** was prepared as outlined in Scheme I. δ -Valerolactone **2** was subjected to acidic methanolysis followed by pyridinium chlorochromate oxidation to give aldehyde **3**¹³ which was homologated using (3,3diisopropoxypropylidene)triphenylphosphorane¹⁴ **5**. Mild acetal hydrolysis with trifluoroacetic acid in chloroform¹⁵ afforded the somewhat labile β , γ -unsaturated aldehyde **4**.


Scheme I

^a H⁺, MeOH. ^b PCC, CH₂Cl₂. ^c <u>5</u>, THF, -78 to 23°C, 6h. ^d CF₃CO₂H, CHCl₃.

The unit containing C(12)-C(20) was obtained by adding the magnesium salt of 1heptyne **£** to ethylene oxide¹⁶ at -20°C and partial hydrogenation of the resultant acetylenic alcohol to <u>cis</u>-olefin **7**¹⁷ using Lindlar catalyst in ethyl acetate (Scheme II). The iodide derived from **7** by sequential tosylation and sodium iodide exchange generated arsine **8** upon lithiodiphenylarsine¹⁸ displacement. Aluminum chloride mediated addition of t-butyl chloride to **8** furnished crystalline arsonium salt **9** (dichlroromethane /ether)


<u>Scheme II</u>

^a EtMgBr (1.0 equiv), Et₂O, reflux, 2 h ; oxirane (2.0 equiv), -20°C, 2 h. ^b Pd/CaCO₃/Pb (10 % w/w), H₂, AcOEt, 25°C, 3 h. ^c TsC1, C₅H₅N, 0°C, 3 h. ^d NaI, CH₃COCH₃, 25°C, 2 h. ^e Ph₂Asli, THF, -78° to 25°C, 1 h. ^f t-BuCl (1.2 equiv), AlCl₃, CH₂Cl₂, 25°C, 24 h.

Conversion of $\underline{4}$ to γ -hydroxy-enal $\underline{11}$ was realized utilizing the newly developed¹⁹ β -formyl vinyl anion equivalent (3,3-diisopropoxypropyl) triphenylarsonium chloride²⁰ $\underline{13}$ (Scheme III). The ylide of $\underline{13}$ (generated with 0.3 M LDA in THF at -40°C) was condensed with $\underline{4}$ to give selectively^{18a} <u>trans</u>-epoxide $\underline{10}$ which was purified over silica gel (hexane/ether/triethylamine 89:10:1). The epoxyaldehyde obtained from $\underline{10}$ by acetal hydrolysis using Conia's method²¹ was smoothly isomerized to <u>trans</u>-enal $\underline{11}$ by stirring with an ethereal suspension of silica gel, filtration and chromatographic purification. Coupling of $\underline{11}$ with the ylide of $\underline{9}$ (generated as above) yielded $\underline{12}$, the methylester of hepoxilin A_3^{22} .

Scheme III

Prior to biological evaluation, the sodium salt of 1 is prepared by dissolving 100 mg of 12 in 100 ml of ethanol and 100 ml of 1M aqueous sodium carbonate under an argon atmosphere. After standing at ambient for 4 h and at 0°C overnight, the solvent is removed under an argon stream and the residue re-dissolved in an appropriate vehicle.

Acknowledgement: This work was supported by the CNRS, and NATO Grant 26/85.

References and Notes :

- C.R. Pace-Asciak, K. Mizuno and S. Yamamoto, Biochim, Biophys. Acta 1. <u>712</u> :142-145 (1982).
- 2. C.R. Pace-Asciak, E. Granström and B. Samuelsson, J. Biol. Chem. 258 : 6835-6840 (1983).
- 3. R.L. Jones, P.J. Kerry, N.L. Poyser, J.C. Walker and N.H. Wilson, Prostaglandins 16:583-589 (1978).
- R.W. Bryant and J.M. Bailey, Prostaglandins 17: 9-18 (1979). 4.
- C.R. Pace-Asciak, K. Mizuno and S. Yamamoto, Biochim, Biophys. Acta 5. <u>665</u> :352-354 (1981).
- 6. C.R. Pace-Asciak, J.M. Martin, E.J. Corey and W.G. Su, Biochem. Biophys. Res. Comm. 128 : 942-946 (1985).
- 7. C.R. Pace-Asciak, J.M. Martin and E.J. Corey, Prog. Lip. Res. 25 : 625-628 (1986).
- 8. L.O. Derewlany, C.R. Pace-Asciak and I.C. Radde, Can. J. Physiol. Pharm. 62: 1466-1489 (1984).
- 9. C.R. Pace-Asciak, S.P. Lee and J.M. Martin, Biochem. Biophys. Res. Comm. 147:881-884 (1987).
- D. Piomelli, E. Shapiro, J.H. Schwartz, S.J.Fee-inmark, Taipei Conference on 10. Prostaglandins and Leukotriene Research, Taipei, Taiwan, R.O.C., April 22-24, 1988 : Abstract N° S 82, p. 67.
- 11. C.R. Pace-Asciak, Biochem. Biophys. Res. Comm. 151 : 493-498 (1988).
- E.J. Corey and W.G. Su, Tetrahedron Letters 25: 5119-5122 (1984). Also see, V. Nair 12. and T.S. Jahnke, <u>Tetrahedron 43</u>: 4257-4264 (1987).
- 13. M. Huckstep and R.J.K. Taylor, Synthesis 881-882 (1982).
- 14. J. Viala and M. Santelli, <u>Synthesis</u> 395 (1988).
- R.A. Ellison, E.R. Lukenbach, C. Chiu, Tetrahedron Letters 499-502 (1975). 15.
- 16. R.W. Bradshaw, A.C. Day, E.R.H. Jones, C.B. Page, V. Thaller, R.A. Verhodge, J. <u>Chem. Soc. C.</u> 1156-1158 (1971).
- 17. R. Paul, S. Tchelitcheff, Bull. Soc. Chim. Fr. 869-875 (1956).
- (a) W.C. Still and V.J. Novack, <u>J. Amer. Chem. Soc. 103</u>: 1283-1285 (1981); 18. (b) A.M. Aguiar and T.G. Archibald, J. Org. Chem. 32: 2627-2628 (1967).
- P. Chabert, J.B. Ousset and C. Mioskowski, Tetrahedron Letters 30: 179-182 (1989). 19.
- 20. Made from the iodide salt by passage through an anion exchange column. The iodide salt gave markedly inferior yields of 10%.
- 21.
- F. Huet, A. Lechevallier, M. Pellet and J.M. Conia, <u>Synthesis</u> 63-65 (1978). Spectral data were identical with those in ref. 12. TLC: SiO₂, C₆H₆/Et₂O 85:15, R_f 22. 0.38 and 0.33 for the two C(8)-epimeric alcohols of 12. Ester 12 was further characterized as its TMS ether and as the TMS ether of the triol obtained after reduction with lithium aluminum hydride.

(Received in France 7 March 1989)